

Deep Learning

5 Backpropagation-1

Dr. Konda Reddy Mopuri Dept. of Artificial Intelligence IIT Hyderabad Jan-May 2023

Recap

Gradient of a scalar valued function $f(\mathbf{x})$: $\mathbf{x} \rightarrow \left(\frac{\partial f}{\partial x}\right)$ $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_l}$ *∂x^D* \setminus^T

Recap

Gradient of a scalar valued function $f(\mathbf{x})$: $\mathbf{x} \rightarrow \left(\frac{\partial f}{\partial x}\right)$ $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_l}$ *∂x^D* \setminus^T Gradient of a vector valued function **f**(**x**) is called Jacobian:

$$
\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^T f_1 \\ \vdots \\ \nabla^T f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}
$$

 ${\bf D}$ w_{jk}^l is the weight connecting j^{th} neuron in l^{th} layer and k^{th} neuron in $(l-1)^{st}$ layer

 ${\bf D}$ w_{jk}^l is the weight connecting j^{th} neuron in l^{th} layer and k^{th} neuron in $(l-1)^{st}$ layer

${\bf D}$ b_j^l is the bias of j^{th} neuron in l^{th} layer

- ${\bf D}$ b_j^l is the bias of j^{th} neuron in l^{th} layer
- \mathcal{D} x_j^l is the activation (output) of j^{th} neuron in l^{th} layer

 ${\bf D}$ b_j^l is the bias of j^{th} neuron in l^{th} layer \mathcal{D} x_j^l is the activation (output) of j^{th} neuron in l^{th} layer 3

$$
x_j^l = \sigma \left(\sum_k w_{jk}^l x_k^{l-1} + b_j^l \right)
$$

- ${\bf D}$ b_j^l is the bias of j^{th} neuron in l^{th} layer \mathcal{D} x_j^l is the activation (output) of j^{th} neuron in l^{th} layer 3 $x_j^l = \sigma(\sum)$ $w_{jk}^{l}x_{k}^{l-1} + b_{j}^{l}$
- ⁴ Vector of activations (or, biases) at a layer *l* is denoted by a bold-faced \mathbf{x}^l (or \mathbf{b}^l) and W^l is the matrix of weights into layer l

k

${\bf D}$ s_j^l is the weighted input to j^{th} neuron in l^{th} layer

 ${\bf D}$ s_j^l is the weighted input to j^{th} neuron in l^{th} layer 2 $s_j^l = \sum_k w_{jk}^l x_k^{l-1} + b_j^l$

${\bf D}$ s_j^l is the weighted input to j^{th} neuron in l^{th} layer 2 $s_j^l = \sum_k w_{jk}^l x_k^{l-1} + b_j^l$ $\mathbf{s}^l = W^l \mathbf{x}^{l-1} + \mathbf{b}^l$

- ${\bf D}$ s_j^l is the weighted input to j^{th} neuron in l^{th} layer 2 $s_j^l = \sum_k w_{jk}^l x_k^{l-1} + b_j^l$ $\mathbf{s}^l = W^l \mathbf{x}^{l-1} + \mathbf{b}^l$
- θ σ is the activation function that applies element-wise

Gradient descent on MLP

 $\mathcal{L}(W,\mathbf{b})=\sum_n l(f(x_n;W,\mathbf{b}),y_n)=\sum_n l(\mathbf{x}^L,y_n)$ $(L$ is the number of layers in the MLP)

Gradient descent on MLP

- $\mathcal{L}(W,\mathbf{b})=\sum_n l(f(x_n;W,\mathbf{b}),y_n)=\sum_n l(\mathbf{x}^L,y_n)$ $(L$ is the number of layers in the MLP)
- For applying Gradient descent, we need gradient of individual sample loss with respect to all the model parameters

$$
l_n = l(f(x_n; W, \mathbf{b}), y_n)
$$

$$
\frac{\partial l_n}{\partial W_{jk}^{(l)}}
$$
 and
$$
\frac{\partial l_n}{\partial \mathbf{b}_j^{(l)}}
$$
 for all layers l

Forward pass operation

$$
x^{(0)} = x \xrightarrow{W^{(1)}, \mathbf{b}^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{W^{(2)}, \mathbf{b}^{(2)}} s^{(2)} \dots x^{(L-1)} \xrightarrow{W^{(L)}, \mathbf{b}^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x;W,\mathbf{b})
$$

Formally,
$$
x^{(0)} = x, f(x; W, \mathbf{b}) = x^{(L)}
$$

\n
$$
\forall l = 1, ..., L \begin{cases} s^{(l)} & = W^{(l)} x^{(l-1)} + \mathbf{b}^{(l)} \\ x^{(l)} & = \sigma(s^{(l)}) \end{cases}
$$

Dr. Konda Reddy Mopuri **di America America Access 1** dl - 5/ Backpropagation-1 **7 7**

Core concept of backpropagation

Core concept of backpropagation \bullet

 \bullet

$$
(g \circ f)'(x) = g'(f(x)) \cdot f'(x)
$$

Core concept of backpropagation \bullet

 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$

 \bullet

 \bullet

$$
\frac{\partial}{\partial x}g(f(x)) = \frac{\partial g(a)}{\partial a}\Big|_{a=f(x)} \cdot \frac{\partial f(x)}{\partial x}
$$

$$
\Phi \, f(x) = e^{\sin(x^2)}
$$
, let's find $\frac{\partial f}{\partial x}$ (work it out on the board)

Dr. Konda Reddy Mopuri dl - 5/ Backpropagation-1 26

Chain rule of differential calculus for an MLP भारतीय प्रौद्योगिकी संस्थान डेयराबाद Indian Institute of Technology Hyderabad

 \bullet

$$
J_{f_N \circ f_{N-1} \circ \ldots f_1(x)} = J_{f_N (f_{N-1} (\ldots f_1(x)))} \cdot J_{f_{N-1} (f_{N-2} (\ldots f_1(x)))} \cdot \ldots \cdot J_{f_2 (f_1(x))} \cdot J_{f_1 (x)}
$$

 $J_{f(x)}$ is Jacobian of f computed at x.