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Recap

Gradient of a scalar valued function f(x): x→
(

∂f
∂x1

, . . . , ∂f
∂xD

)T

Gradient of a vector valued function f(x) is called Jacobian:
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MLP: Some Notation

1 wl
jk is the weight connecting jth neuron in lth layer and kth neuron in

(l − 1)st layer

2
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MLP: Some Notation

1 bl
j is the bias of jth neuron in lth layer

2 xl
j is the activation (output) of jth neuron in lth layer

3

xl
j = σ

(∑
k

wl
jkx

l−1
k + bl

j

)
4 Vector of activations (or, biases) at a layer l is denoted by a

bold-faced xl ( or bl) and W l is the matrix of weights into layer l
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MLP: Some Notation

1 sl
j is the weighted input to jth neuron in lth layer

2 sl
j =

∑
k w

l
jkx

l−1
k + bl

j

3 sl = W lxl−1 + bl

4 σ is the activation function that applies element-wise
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Gradient descent on MLP

Loss is L(W,b) =
∑

n l(f(xn;W,b), yn) =
∑

n l(xL, yn) (L is the
number of layers in the MLP)

For applying Gradient descent, we need gradient of individual sample
loss with respect to all the model parameters

ln = l(f(xn;W,b), yn)

∂ln
∂W

(l)
jk

and ∂ln
∂b(l)
j

for all layers l
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Forward pass operation

x(0) = x
W (1),b(1)
−−−−−−−→ s(1) σ−→ x(1) W (2),b(2)

−−−−−−−→ s(2) . . . x(L−1) W (L),b(L)
−−−−−−−→ s(L) σ−→ x(L) = f(x; W, b)

Formally, x(0) = x, f(x;W,b) = x(L)

∀l = 1, . . . , L
{
s(l) = W (l)x(l−1) + b(l)

x(l) = σ(s(l))
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Chain rule of differential calculus

Core concept of backpropagation

(g ◦ f)′(x) = g′(f(x)) · f ′(x)

∂

∂x
g(f(x)) = ∂g(a)

∂a

∣∣∣∣
a=f(x)

· ∂f(x)
∂x
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Chain rule of differential calculus
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Chain rule of differential calculus

1 f(x) = esin(x2), let’s find ∂f
∂x (work it out on the board)
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Chain rule of differential calculus
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Gradient Flow
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Gradient Flow
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Gradient Flow
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Gradient Flow
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Gradient Flow
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Chain rule of differential calculus for an MLP

JfN ◦fN−1◦...f1(x) = JfN (fN−1(...f1(x))) · JfN−1(fN−2(...f1(x))) . . . · Jf2(f1(x)) · Jf1(x)

Jf(x) is Jacobian of f computed at x.
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